Water control in Norwegian tunnelling

Presented by Eivind Grøv
Research Manager SINTEF Rock & Soil Mechanics
Vice President of the ITA

Photos by BASF
Water control in Norwegian tunnelling
Tunnelling, a chain of activities
Water control in Norwegian tunnelling
Hard rock environment

- The Scandinavian host rock varies from poor to extremely good rock.
- Folding, faulting and high tectonic stresses influence the stability in tunnels.
- Weakness zones can exhibit great variation in quality, Q-values from extremely poor to good.
- The width of such zones may vary from a few centimeters to tens of meters.
- The CHALLENGE: to deal with a frequently changing ground.

It is typical Hard Rock, but not necessarily “Good Rock”
Water control in Norwegian tunnelling
Some anecdotes from Norwegian tunnelling

- In previous hydropower tunnelling projects, water inflow was a "plus", few, if any, mentioned environmental impacts.
- The construction of the Lieråsen tunnel 30 years ago drained a sumpy area to become valuable land for a new housing complex.
- The Romeriksporten tunnel in late 90’s faced public, political, environmental and technical focus on a scale never experienced before.

The unfortunate affair at Romeriksporten triggered a new approach to water control in Norwegian tunnelling.
Water control in Norwegian tunnelling
Publications released recently
Water control in Norwegian tunnelling

Purpose of these publications

- Water control according to the pre-grouting concept “prevention is better than cure”
- Focus has shifted to environmental concern rather than practical tunnelling aspects
- Technical lessons have been learned
- Demonstrate and document Norwegian experiences
- Experiences believed to benefit tunnelling projects elsewhere
Water control in Norwegian tunnelling

Why water control?

There are various requirements to an underground project, one might be to produce a “dry tunnel”, why?

- Prevent an adverse internal environment in the tunnel
- Prevent unacceptable impact on the external, surrounding environment
- Maintain hydrodynamic containment
Water control in Norwegian tunnelling
Impact of ground water lowering

- Disturbing existing biotypes, flora and fauna might be sensitive to changes in groundwater conditions, new species may show up
- Draining of natural lakes and ponds in recreational areas
- Pore pressure reduction in soil deposits causing settlements of buildings and surface structures
- Lost containment could lead to leakage of stored products, i.e. contamination
Water control in Norwegian tunnelling
Normal requirements to maximum inflow

- A maximum inflow of 30 l/min/100m is used in e.g. sub-sea tunnels or elsewhere with no specific requirements
- 2 l/min/100m in particular areas
- Various requirements may apply for different sections of a tunnel pending on the local consequences of groundwater lowering
Water control in Norwegian tunnelling
The impermeable nature of the rock mass

The actual permeability of the rock mass and associated discontinuities may vary from 10-5m/sec to 10-12m/sec.

The rock mass is neither homogenous nor continuous, but suffering:
- Cracks and joints
- Weaknesses
- Weathering

• The permeability of rock mass may be in the range of 10-7 to 10-9 m/sec.
• A typical jointed aquifer, water occurs on the most permeable discontinuities.
• The most conductive zones must be identified and treated.
• Prevent the tunnel imposing an adverse situation in the ground-water regime.
Water control in Norwegian tunnelling
Basic aspects in water control

- Pre-grouting is dominant to post-grouting
- Membrane lining is used in rare occasions
- Re-infiltration is an option sometimes applied but we try to avoid it
- A drained concept applies
Water control in Norwegian tunnelling

Drained concept

- Excessive water is not allowed to build up behind support
- Support measures not designed to take the hydrostatic load
- Controlled handling of water, collection and discharge
- Inner lining to prevent water entering into the traffic area
- Inner lining does not interact with the tunnel support
Water control in Norwegian tunnelling
Pre-excavation analyses

- Empirical analysis, many places may have a comprehensive data base from previous projects
- Analytical formulas developed, back-calculating a number of cases
- Numerical modelling (2D & 3D) can be applied to simulate influence areas
- Sensitivity analysis are the modern tool
Water control in Norwegian tunnelling

Ground water balance

- There might be various indicators for assessing the influence of tunnelling on the GW.
- GW balance is a term of increased focus for
 - determination of inflow requirements
 - and follow-up and monitoring of inflow
- GW balance may be limited to natural changes
- The inflow can be defined by the level at which GW balance is restored
- A “Ground water law” has been proposed saying that: -residual flow < 5-15% of the mean annual flow from the catchment area is not acceptable
Water control in Norwegian tunnelling
Aspects of a grouting strategy

- Evaluate the effect of the inflow criteria
- Identify conductive zones in the rock mass
- Aim at completing grouting after 1 round
- Focus on a limited area around the opening
- Choose grout type, mix design, pressure & grout hole pattern
- Include additives to custom design the properties of the grout
- Monitor inflow, evaluate modifications
- Integrate the grouting in the support system
Water control in Norwegian tunnelling

Typical applications

<table>
<thead>
<tr>
<th>Project</th>
<th>Max inflow</th>
<th>Measured inflow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(l/min/100 m)</td>
<td>(l/min/100 m)</td>
</tr>
<tr>
<td>Baneheia</td>
<td>2.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Storhaug</td>
<td>3-6</td>
<td>1.6</td>
</tr>
<tr>
<td>T-banen</td>
<td>7-14</td>
<td>4.3</td>
</tr>
<tr>
<td>Asker skøyen</td>
<td>< 4 to 16</td>
<td>4-7</td>
</tr>
<tr>
<td>Holsfjorden</td>
<td>5-40</td>
<td>Future</td>
</tr>
</tbody>
</table>
Water control in Norwegian tunnelling
Hydrodynamic containment

- Unlined caverns at shallow depth have been used for "Storage" to restrict product leakage
- Tunnelling may create a draw-down which could lead to a situation where: internal pressure > GW press
- To obtain a specified GW level/pressure:
 - pre-grouting of the rock mass
 - water injection to maintain the GW level
Water control in Norwegian tunnelling

Organisation and contract requirements

- Organisation, requirements and contract must be well prepared
- Well proven and tested procedures are used
- Smooth co-operation contractor/owner
- Delegate responsibility to tunnelling staff
- Adaptation to the actual conditions
- Risk sharing unit rate contract, can choose
- Fixed price, functional requirements and incites for a time effective grouting
Water control in Norwegian tunnelling
Monitoring and follow-up

- Pre-construction assessment can be made, working procedures can be established
- Monitoring is needed to document the effect on the groundwater regime:
 - at surface before construction
 - at the tunnel face from probe holes
 - of water flow in the tunnel
 - at surface during construction
Water control in Norwegian tunnelling
Results from a research programme

- Standardised, systematic grouting scheme through the whole tunnel is most advantageous for ground water control and (surprisingly?!) also for the excavation cycle
- Increased drilling capacity allowed a greater amount of holes for optimal grouting
- Superplastizers and silica additives increased the penetrability and pumpability for grouting
- Increased grouting pressure up to 100 bars yielded better penetrability and grouting capacity
- Reduced w/c ratios improved the quality of the grout, and
- The pre-grouting efforts improved the rock mass stability
Water control in Norwegian tunnelling

Construction

- High capacity equipment, multi-skilled workmen at the tunnelling face allowing high utilization of the equipment
- Adaptability to the actual ground conditions, careful follow-up of the encountered rock mass by mapping and classification for a best fit of the support and grout measures
- Observation of the ground behaviour by visual surveying and physical measurements if required fulfilling the Observational method
- Installation of permanent rock support close to the tunnel face as practically possible fulfilling the criteria for permanent support work
Water control in Norwegian tunnelling

Contracts and risk sharing principles

- The Owner carries the risk for the rock mass conditions.
- The Owner is responsible for the collection of information on ground conditions. All information is disclosed to the tendering contractors for their own interpretation.
- The Owner presents their estimates on quantities on rock support, rock mass grouting etc. all expected measures are quantified in the tenders/contracts.
- The Contractor carries the risk for the appropriate and efficient handling of the works focusing to improve technical and organizational performance.
- The contracts include regulations for extension of construction time based on actually performed quantities.
Water control in Norwegian tunnelling
Contracts and risk sharing principle

- A figure obtained from a classical article by Kleivan
Water control in Norwegian tunnelling

Cooperation at site

- In a broad perspective there are probably more common interests at the construction site than interest of conflicts.
- Respect for the different roles and values as tunnelling is a complex process and various skills are needed at the construction site.
- Constructive co-operation between the representatives of the involved parties.
- Experienced professionals participating in the decision making.
- Solve conflicts at construction site by negotiation after the technical issues have been settled.
Water control in Norwegian tunnelling

Conclusion

"TIGHT ENOUGH FOR ITS PURPOSE"
Water control in Norwegian tunnelling

Thank you for your kind attention!

See www.tunnel.no for more free downloading!