## Pile Tunnel Interaction During Mechanized Tunnelling



Tiago Dias, PhD

Adam Bezuijen, PhD

Laboratory of Geotechnics, Ghent University, Belgium

9<sup>th</sup> IS - Underground Constructions in Soft Ground April. 2017

São Paulo,

#### Introduction



Piles and tunnels are now close enough for their interaction to be significant





#### Introduction



First attempts to define the pile settlement based on the relative position to the tunnel



#### Introduction



- øTunnelling degrades the pile base capacity
  - q Higher mobilization of shaft friction
- øGround settlements induce negative friction
  - q Higher mobilization of toe capacity





## So what was necessary?



ØAn accessible method for pile analysis that could react to ground settlements

#### **Modified Load Transfer Method**

q Include unloading paths for the load mobilization



#### Mobilization Functions = $f(\Delta \delta)$



Shaft Friction [X] Tri-linear (bi-directional) mobilization function

Toe Force X Exponential loading; Proportional unloading (Rebound)





## Pile Loading Cycle





## Pile Equilibrium with Ground Displacements



## **Tunnelling Settlements**



ØNumerical solution of the equilibrium equations based on the (stress) boundary conditions at the excavation perimeter

q Boundary Conditions = f ( Physical Proce

- **ØTail Void Grout** 
  - q The injected grout pressure dissipates as grout flows between the lining and the so

p = f (soil-lining gap)

$$p_B = p_A - \frac{\tau_g}{gap}.dl - \gamma_g.dh$$



## **Grout Injection**



- ØHow can we model that realistically?
  - q Traditional approach = The imposed pressure is constant
  - q Iterative calculation = The pressures depend on the ground deformations

$$\{\sigma\} = \lambda. \{\sigma\}_0$$

$$\{\sigma\} = f(TBM)$$



## **Tunnelling Settlements**



- Diameter of 10m, centred at a depth of 30m
  - q Initial soil-lining gap of 15cm
- ØHardening Soil model
  - q Empirical correlations with RD
- Grout Properties
  - q Yield stress of 0.5 kPa;  $\gamma = 20 \text{ kN/m}^3$



- øInjection Strategy
  - q Grout p. at the tunnel roof [x] 0.5 and 1.0% volume loss around the tunnel

## **Tunnelling Settlements**





#### **Example Piles**

- $\emptyset$ Piles 22.5 m / D = 1 m / E = 10 GPa /  $\gamma$ =25 kN/m<sup>3</sup>
- **Shaft** Linear increase

$$q S1 = S3 = 0.3 / S2 = 0 / \text{Tep} = 1$$

- - q 10% rebound
- ØPile Capacity − 1.5 MN
  - q 100% Shaft (T0)
  - g 50% Shaft and 50% Toe (T50)
- øInitial Loading State − FS=2



#### **Examples of Pile Tunnel Interaction**



#### øFriction pile

- q Settlements  $\delta p/Dp \times \delta p/\delta s$   $o = 0.5\% \times 1.0\%$
- q Shear Mobilization (negative shear  $\delta s > \delta p$ )
- q Increment of Axial Stress (decrease at A, but increased at B and C)



#### **Examples of Pile Tunnel Interaction**



- Shaft and Toe Capacities (50 / 50%)
  - q Settlements Higher than T0
  - g Shear Mobilization forces can be transferred to the toe
  - q Increment of Axial Stress (decrease at A, but increase at B and C)



#### Conclusion

- ØA modified version of the load transfer method can be used to predict how a single pile reacts when subjected to ground displacements, such as the ones induced during a mechanized excavation
- øPile settlements decrease with Ld, but increase with the tunnel VL q Between 6.5 and 1.3% of the pile diameter.
- øThe ratio between the pile and the surface settlements ( $\delta p/\delta s$ ):
  - q >1 for a pile located above the tunnel
  - q <1 for Ld larger than one tunnel diameter.
- ØAxial forces decrease when the pile is directly above the tunnel, but increase otherwise

# THANK YOU FOR YOUR ATTENTION







Tiago Dias, PhD

Adam Bezuijen, PhD

Ghent University, Belgium

#### **Contact:**

tgsdias@gmail.com

www.researchgate.net/profile/

Trago\_Dias/

9<sup>th</sup> IS - Underground Constructions in Soft Ground April. 2017

São Paulo,